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Abstract

Photon statistics and phase properties of two-mode squeezed number states are stud-

ied. It is shown that photon number distribution and Pegg-Barnett phase distribution for

such states have similar (N + 1)-peak structure for nonzero value of the difference in the

number of photons between modes. Exact analytical formulas for phase distributions based

on different phase approaches are derived. The Pegg-Barnett phase distribution and the

phase quasiprobability distribution associated with the Wigner function are close to each

other, while the phase quasiprobability distribution associated with the Q function carries

less phase information.

1 Introduction

Recent developments in quantum optics have led to new proposals to generate number states

of the electromagnetic field using conditioned measurements tedmiques [1] or the properties of

atom-field interactions in microwave cavities in the micronlaser [2]. The precisely defined two-

mode photon number state IN + q, N) can be used as an input field in a squeezing device, such

as a parametric amplifier. The model involves a signal and an idler modes driven by a classical

pump. The Hamiltonian for the two coupled nmdes is taken to be [3, 4] (we set h = 1)

/_ = w, ata + wbbtb- i{gfibexp(iwt) - g'btfi t exp(-iwt)},

where w is the pump frequency and 9 is the effective intermode coupling constant. If we consider

exact resonance w = to, +Wb then the Hamiltonian may be transformed into the interaction picture

9, = -i{gab- g-brat}.

In this picture the time-evolution operator is

exp(-i/:/#) = exp{-gtab + g'tbtat}.

"and is immediately identifiable as a time-dependent two-mode squeezed operator:

exp(-i/Z/tt) = ._ (gt).

with squeezing parameter _ = 9f. The output state at time t will be the two-mode squeezed

number state

I_) = exp(-U,i, + {'//at)l.\ ' + q..\).
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The properties of this state are phase dependent and it should be interesting to study them.

The problem of the quantum description of the optical field phase has been the subject of

considerable study for many years [5]. This is connected with the difficulty in constructing a

Hermitian phase operator. Within the past few years the notion of phase variables in quantum

systems has been greatly clarified. Pegg and Barnett [6]-[8] have shown how such an operator can

be defined for quantized electromagnetic fields. This new formalism makes it possible to describe

the quantum properties of optical phase in a direct way within quantum mechanics on the basis

of the Hermitian phase operator and its eigenstates.

A quite different approach to the concepts of the phase variable has also been widely used

in quantum optics [9]-[11] and which involves quantum quasiprobability distributions such as

the Q function and the Wigner function rather than Hermitian operators and their eigenstates.

These quasiprobability distributions depend upon the complex eigenvalue a of the non-Hermitian

annihilation operator, which can be expressed in terms of a radial variable ]o, I and a "phase" 0

both of which are real. If we integrate over the radius, the resulting distributions are periodic

in the phase angle and, for the most of states they satisfy all properties required by a proper

phase distribution. In recent papers, the Pegg-Barnett phase distribution have been compared

with those distributions obtained fi'om the Vvigner and Q functions by integrating them over the

radius for the multi-photon down-conversion [12], displaced number states and displaced thermal

states [13], squeezed number states and squeezed thermal states [1-t]. In l_his paper we extend

such comparison onto two-mode case.

The purpose of this paper is to study photon statistics and phase properties of the two-

mode squeezed number states which can be considered as a natural generalization of a two--mode

squeezed vacuum state.

2

,_¢(r, 9) on tlle two-mode number state IN + q, :V), that is

Photon number statistics

Consider two modes of the electromagnetic field, which have annihilation operators b. and

A two-mode squeezed number state (TMSN$) is defined by acting with the squeeze operator

IN + q, Ar)(,,_) = _C(r,_)]N + q, N), q > 0,

where q is the difference in the number of photons between two modes and

(1)

,_(_,_) = exp[r(a_e-2_- g_a*e2'_)]. (2)

In problems in which photons are either created in pairs or destroyed in pairs the value of q remains

constant.. Note that in many applications where pair creation occurs starting fi'om vacuum, the

parameter q will be zero. The number state decomposition of T.MSNS can be written as

(.3)

I,_/+ q, N)(_,¢) ,\; \= 1,,+ q,,,>(,, + q,,,l__ + q,. /(_;_ =
rl

=
71

* .2, '!(
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where

btl _--
(tanhr)N+n (N!(N + q)!n!(n + q)!)1/2
(cosh r)l+q

mi n(n')"r) (_l),_-k(sinh r) -2k

× _ k!(,_- k)!(x - k)!(q+ _)!
k=0

(4)

and

with _ being a phase of squeezing. The above amplitude is obtained by using the factored form

of the two-mode squeeze operator [15]

S(r,_) = (coshr)-'exp[-fitbte21_'tanhr]

x exp[-(iz t& + bib)ln(cosh r)] exp[fibe -2i'; tanh r]. (6)

The mean number of photons in the TMSNS is

{&_a + b_b) = (2N + q + 1)cosh 2r- 1. (7)

The joint probability to find n= photons in mode a and nb photons in mode b is given by

P('_,'_b) = I('_,'_1, \r + q,-¥)(,-.;)I2. (s)

Using (3) and (4), we get

P(n_,,z6) = P(n + q,n),J,,.,,,+_6,_,n, (9)

where

P(n + q,n) _ P_(n) = Ikl 2. (10)

As we can see in Fig. 1, photon number distribution Pq(n) has an oscillatory behaviour. Such a

behaviour is a consequence of interference in four-dimensional phase space [16]. We would like to

emphasize a presence of (N + 1) peaks in the photon number distribution. The similar behaviour

of the photon number distribution was observed for the displaced number states [17]. It should

be stressed that such a peak structure for TMSNS can be revealed only for those values of the

parameter q greater than a certain number. This number depends on the value of :\; and for large

5' we ought to choose large values for such a number. Otherwise, some adjacent peaks in the

photon number distribution might overlap and thus (N + 1)-peak structure cannot be certainly
discerned.
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FIG. 1. Photon number distribution for the two-mode squeezed number state with r = 0.5, q = 50

and (a) N=0,(b) N=l,(c) N=2.
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3 Quasiprobability distributions

In this section we examine the representation of TMSNS by quasiprobability phase-space

distributions. For convenience we choose the squeezing parameter to be real, _ = r. The two-mode

quasiprobability distributions are formed by a natural generalization of those for the single-mode

fields [18]. The Glauber-Sudarshan T' function, the Wigner function and the Q function are

obtained by evaluating the Fourier transforms

1FV(')(a'/3) = _i" d2,1d2_exp(a,l" - a'li) exp(fl_" - fl'_)C('l(q,_),
oo

(11)

from the characteristic functions

CO)(r/,_) = exp (_(l_l + -- -- (12)

wheres = 1 ifV = P, s = 0if V = I|," and s = -1 if V = Q. \Ve would like to notice that

there no exists well-defined Glauber-Sudarshan "P function for states under consideration owing

to their nonclassical nature [18, 19].

According to ref. [20], the Q function call alternatively be defined as

Q(a, _) = 1(o, 31_la, 3). (13)

From this definition we see that the Q function is ahvays non-negative. Using the definition of

the density matrix of TMSNS

fi = _5,(r)lA" + q,.V)(:V + q,.,Vl:_t(, -) (14)

and the factored form of the squeeze operator (6), we obtain

q(a, _) =
0[ 9

rr_(cosh r)a:,¢+zq+2 exp[-(a3 + a'3") tanh r]exp[-(lal _ + [3[e)]

xEE"¢ X (_1sinh r)"+_.V](N + q)!(a'3")_:-"(a3) x-_
,=o k=o n[l,'!(N - n)!(.V - k)!(N + q - n)!(.V + q - k)!"

(15)

As to the Wigner function, it can also be represented as [20]

11"(o,3) = _2Tr{_Do(2a)bb(23)exp[ix(fitfi + t_tb)]} . (16)

Where D,(-/) and D6('_) are the displacement operators for modes a and b respectively. It is

straightforward to evaluate the \Vigner function using eq. (14) and the operator transforma-

tions [15]

gt(,')fi_q(r) = fi cosh ,- - b_sinh ,-, (17)

Sti,-)bS(,.) = bcosh ,- - d.t sinh ,-. _tS)



and their Hermitian conjugates.Wefind a quite simple analytical form for the Wigner function

(-1) qexp[-2 cosh2 (Io? + - 2sinh 2r(a3 + a'fl')]

xt.x, ((2 sinh rlol) 2 + (2 cosh ,l ql) + 2sinh 2r(o3 + o'fl'))

xLN+, ((2 cosh _lol) 2 + (2sinh rlBI) 2 + 2sinh 2r(o8 + a'B*)). (19)

where L,,(z) is the Laguerre polynomial of order n. From eqs. (15) and (19) one can see that the

Q function and the Wigner function depend on the sum of the phases 0, + Obonly. This fact clearly

exhibits the correlated nature of the two--mode squeezed number states. In the next section we

will employ the quasiprobability functions in consideration of phase properties of these states.

4 Phase distributions

Now we employ the two-mode Pegg-Barnett phase formalism [21], [22] to find the phase
distribution function for such states. This formalism is based on the observation that the Hermitian

phase operator can be defined in a flnite-dimensional state space, spanned by the number states.

The main idea of the Pegg-Barnett formalism is to evaluate all necessary expectation values on

this finite-dimensional state space, and only after that the dimension of the space is allowed to

tend to infinity. Having the number state decomposition (3) of TMSNS we can deternfine the

continuous joint phase probability distribution for the continuous phase variables 0o and Oh, which

is given by

1

P(O_,O_)= (27r)----5 1 +9_Zb,,bkcos[(n-k)(O_,_>k +Ob)] , (20)

where b,_ are given by Eq. (4). The distribution (20) is normalized such that

f_i f_i P(O:,O_)dOodOb =1. (21)

One important phase property of TMSNS is seen directly from the form of formula (20). It is

clear that the joint probability distribution depends on the sum of the two phases only

P(O:,Os) = P(O+ = O, + Oh). (22)

This means the strong correlations of the two modes. Integrating P(0_. 0b) over one of the phases

gives a marginal phase distribution P(O_) or P(0s) for the phases _ or 0b. which are uniformly

distributed

P(O,_ ) = P(O:. O_)d06 = 2r. (23)

1
P(Os) = P(O:)= --. (24)

2-z.



Thus the phases 0_ or 0b of the individual modes are uniformly distributed, and the only nonuni-

formly distributed phase quantity is the phase sum 0+ = 0_+0_. In Fig. 2 we plot tile Pegg- Barnett

phase distribution for TMSNS in polar coordinates for different values of I)arameter q. For nonzero

values of q the phase distribution shows (N + 1)-lobe structure, and the greater q the more dis-

tinct lobes become. However, when q = 0 the phase distribution has only one lobe for all N. It

is important to notice a remarkable resemblance in a behaviour of the phase distribution and the

photon number distribution for TMSNS: they both display the (N + 1)-peak structure. Another

significant feature of the joint phase distribution is a property of the phase locking -- the phase

sum is locked to the argument of the squeezing parameter in the limit of large squeezing [21, 23].

Now consider phase quasiprobability distributions which can be obtained by integrating

quasiprobability distribution functions (11) over the radial variables [9], [10]. As we have noticed

above, 7:> function is not well-defined function for the states under consideration and therefore

it is impossible to determine corresponding phase quasiprobability distribution. As a result of

integration of Q(cr, 13) and lg(o_,/3) over IQI and I l, we arrive to the following formula:

1{ }P(v)(o+)- (2rr)2 l+2Zb,,bj, cos[(n-k)0+]aIV)(n,k)alV)(n+q,k+q) , (25)
n>k

where the coefficients G(V)(n, k) distinguish between two distributions, and they are:

(i) for the Q function

a(Q)(n,k) = r[(. + + (26)
,

(ii) for the Wigner function

G(W)(n, k) ( - 1 )a-m2(l'_-kl+2_)/2

k I + ,n), (27)

where ,k = min(n, k), u = max(n, k). All the coefficients G(Vl(n, k) are symmetrical, GCV)(n, k) =

G(V)(k, n), and G(Vl(n, n) = 1. Note, that such expressions (20), (25) for the phase distributions

are valid for all two-mode states with the number state decomposition like in (3). In Fig. 3,

we show the plots of the three phase distributions in polar coordinates for TMSNS calculated

according to formulas (20) and (25) with the coefficients (26) and (27) for different values of N

and nonzero q. It is seen that the Pegg-Barnett phase distribution and P{W)(0+) are similar

and have the N + 1 lobes, while P(O)(o+) is nmch broader and has only one lobe. in the case

q = 0 all three distributions have the same form of one lobe. So, as in the case of displaced

number states [13], there is an essential difference in the phase information carried by PCQ)(0+) and

P(W)(0+). Because of the averaging procedure with the "l)robabilities" G(Q)( n. k )(;lQl( n + q. k + q)

9
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FIG. 2. Phase distribution P(PB)(0+) for the two-mode squeezed number state with r = 0.5,

g = 2 and q = 0 (solid line), q = 3 (long-dashed line) and q = 6 (short-dashed line).
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somephaseinformation is lost in P(Q)(O+). The Pegg-Barnett phase distribution is very close

to the distribution POV)(O+), although it is not identical to it. The phase peaks of PIW)(O+) are

slightly narrower than those of P(PB)(0+). The greater the difference in munber of photons q the

closer these two distributions. Basically they carry the same phase information. This similarity

is in agreement with the area of overlap in phase space arguments, which are that the Wigner

function represents quantum states in the phase space [10]. However, the Wigner function can

take on negative values and the positive definiteness of P(w)(o+) is not automatically guaranteed,

while there are no such problems with the Pegg-Barnett phase distribution.

5 Conclusions

We have discussed photon statistics and phase properties of the two-mode squeezed num-

ber states showing that the photon number distribution and the Pegg-Barnett phase distribution

for such states exhibit the similar N + 1-peak structure for nonzero values of the difference in

the number of photons q between modes. We have compared the Pegg-Barnett phase distribu-

tion with the phase quasiprobability distributions P(Q)(o+) and PCW)(0+) obtained by integrating

the Q function and the Wigner function over the radial coordinates. We have shown that the

Pegg-Barnett phase distribution and the distribution P(W)(o+) carry basically the same phase

information, while the distribution P(Q)(O+) loses an essential part of the phase information.
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